
The Hidden Cost of DIY DevOps for
Embedded Product Teams
Quantifying the Productivity Drain in Embedded Build, Configuration
Management, Hardware Test Automation, and Release Tracking

Author: John N. Macdonald, 4TLAS, Inc

Date: June 2025

Executive Summary
Embedded-product engineering teams are quietly wasting 30 – 50 % of their annual
capacity on the plumbing work required to build, fix, and maintain custom DevOps
solutions for embedded development. For a 20-engineer embedded team with a loaded
cost of $160 k per engineer, overlapping inefficiencies drain roughly $3.9 million of
engineering budget every year. Even after adjusting for overlap, the net capacity lost
totals up to $1.6 million—effectively the output of one to two full-feature teams.
Deploying a purpose-built DevOps toolset that fills the gaps can realistically cut that
waste in half, handing back close to $1 million of productive engineering time each year.

 1 © 2025 4TLAS, Inc.

Table of Contents
Executive Summary 1
Table of Contents 2
1 Introduction 3
2 Embedded Specific Challenges 4
3 Methodology 5
4 Finding the Waste 6

4.1 Build Standardization and Tool‑Chain Churn 6
4.2 Configuration‑Management Firefighting 6
4.3 Hardware Test  Automation Upkeep 6
4.4 Delivery / Release Tracking Overhead 7
4.5 Additional Industry Evidence 8

5 Financial Impact Model 9
5.1 Overlapping Hotspot Estimates 9
5.2 Effective Capacity Lost (30-50%) 9

6 Conclusion 10
7 References 10
About 4TLAS 13

 2 © 2025 4TLAS, Inc.

1 Introduction
Over the last decade, DevOps turned web and mobile release cycles into a push‑button
sport—code merges, test farms that magically elasticize, and new features landing in
production before lunch. Continuous Integration (CI) has transformed the software
development time-to-market cycle.

Luckily, and finally, DevOps concepts and practices are making their way into
embedded development, but they stall the instant the pipeline has to build for multiple
targets, program a microcontroller, drive a hardware‑in‑loop test fixture, or serve up a
re-creatable certification build from six months ago.

Generic CI platforms and the potpourri of DevOps tools that have spawned around them
were never built for cross‑compilers, flash programming devices, controlling
oscilloscopes, or the exhaustive traceability demanded by safety‑critical industries. So
embedded engineers do what they’ve always done: they DIY it. They glue together shell
scripts, Python, YAML, manifest files, spreadsheets, and a heroic dose of process to
cover the gaps. It works—until it doesn’t.

This whitepaper measures the hidden bill for that DIY culture and shows how there is a
market gap for purpose‑built, standardized tools that can free embedded teams to focus
on the product, not the plumbing.

 3 © 2025 4TLAS, Inc.

2 Embedded Specific Challenges
DevOps has proven to be the answer in the web and mobile industries, and these
concepts can be the answer for embedded, but the embedded world collides with five
hard realities that don’t exist for web and mobile:

● Discontinuous Delivery: The firmware may be a line item on the Bill of
Materials (BoM) like a resistor. Even in IoT, over‑the‑air updates are pulls, not
pushes. The firmware that makes it out the door has to work. You might not get a
second shot at it.

● Hardware‑in‑the‑Loop: Hardware is finite, scarce, expensive, sometimes late,
and messy, yet required for verification and validation.

● Cross‑Compile Toolchains: The build environment drifts between laptops and
runners, toolchain versions, and build script mayhem.

● Complex Version Matrices: A 3D matrix that maps software component
versions and hardware versions over time. Your workflow demands flawless
traceability to know who has what and who gets what.

● Compliance and Traceability: In safety-critical and other regulated industries,
you must create and then deliver a mountain of documentation and other
test-related collateral.

These specific challenges lead to embedded teams filling the gaps in the current
DevOps platforms through customized DIY solutions without much thought. It’s part of
the job. The embedded development culture in engineering has always been “can-do,”
scratch, claw, and DIY. We’ll make it happen.

However, the growth in complexity of embedded systems and the number of systems in
the world is demanding a market solution. The good news is that you can feel the
change in the air. Walk around the Embedded World Conference and you’ll see the
terminology posted everywhere (i.e., CI/CD, DevOps, automation, etc). Talk to team
leadership, and they’re now web and mobile workflow-curious. And where once
proficiency in C was the only pillar on which an embedded developer needed to stand,
developers are now pulling Python, YAML, and even JavaScript out of their toolboxes.

 4 © 2025 4TLAS, Inc.

3 Methodology
● Literature scan of global surveys (2020–2025) targeting developer experience,

DevOps, and embedded domains.
● Normalization of disparate metrics into hours‑per‑engineer‑per‑week and

percentage‑of‑workweek values.
● Cost model based on a $160 k loaded annual salary, 48 working weeks, and a

20‑engineer reference team.
● Embedded adjustment: where studies covered general software, we applied

conservative uplifts (×1.2) to reflect longer compile cycles, configuration
management burdens, and hardware‑in‑loop constraints typical in embedded
environments.

 5 © 2025 4TLAS, Inc.

4 Finding the Waste
4.1 Build Standardization and Tool‑Chain Churn

● Developers lose 15 h/week to pipeline waits and fixes [1].
● 43 % of C++‑heavy teams still call long builds a major pain [7].
● Atlassian’s 2024 State of Developer Experience survey reports that 69 % of

developers lose eight or more hours every week dealing with broken builds, flaky
environments, and other pipeline issues [4].

● From more than a decade of project data, 4TLAS finds that up to 50 % of builds
that succeed on a developer’s workstation fail when the same code is built by a
colleague or executed in the CI pipeline.

● Each build breakage or inconsistency absorbs multiple hours of combined
developer and DevOps time to diagnose, reproduce, and roll forward or revert,
compounding delivery delays.

Implication: With cross‑compiles and RTOS builds pushing jobs past the 10‑minute “flow
break” mark [2], embedded shops live on the right‑hand tail of global workflow durations.

4.2 Configuration‑Management Firefighting
● Typical mitigation & rollback work burns 6 h/engineer/week in mixed device fleets

(industry average) — roughly 15 % of capacity.
● Building and maintaining the custom glue required to link builds, tests, and

release artifacts on generic CI platforms (e.g., GitLab, GitHub) consumes an
estimated 20–25 % of total engineering effort, according to Retool’s 2020 survey
of internal-tool builders [6].

● In 4TLAS client engagements, local demo and integration test builds are
frequently unreproducible because configuration management stops at source
code. Binary artifacts, toolchains, build environments, compiler switches, and
hardware configuration settings drift out of sync, sabotaging repeatability.

Implication: When configuration data lives outside version control, every hand‑off risks
“works‑on‑my‑machine” failures. Rebuilding previous release or integration builds for
bug fixing and analysis steals sprint capacity and puts release timelines at risk.

4.3 Hardware Test  Automation Upkeep
● Test-maintenance drag. Mabl’s 2024 State of Testing in DevOps survey shows

that 21 % of a QA team’s testing time is now spent just keeping automated tests

 6 © 2025 4TLAS, Inc.

alive, and 34 % of respondents call maintenance their single biggest
pain-point—a 138 % jump versus 2022 [12].

● Budget sink. The World Quality Report 2022-23 finds that 30–50 % of the total
test-automation budget is consumed by script maintenance—the largest single
cost driver once frameworks are in place [13].

● Resource bottleneck. Perforce’s 2023 State of Test Automation survey reports
that 22 % of teams cite “lack of resources to automate and maintain tests” as
their top challenge, outranking all other pain-points [14].

● 4TLAS has found that many organizations automating Hardware-in-the-Loop
testing do so with PyTest, but the framework demands a fully custom layer to
manage DUT farms, external equipment control, and orchestrate test content.
QA engineers rarely have that software‑development expertise, so the burden
shifts to the product team. In fact, much testing stays in the manual domain due
to the burden of custom requirements. Industry surveys show maintenance
already consumes 21 % of QA time and is the #1 pain-point [12]. PyTest-based
HIL only amplifies that drag and pulls it into the development team.

Implication: DIY HIL stacks divert scarce engineering hours into glue code instead of
new tests, delaying defect discovery and stretching program schedules.

4.4 Delivery / Release Tracking Overhead
● McKinsey finds leading software organizations target 70 % inner‑loop / 30 %

outer‑loop time split [5]. Many embedded organizations invert that ratio when
release coordination is manual.

● Retool’s survey shows bigger firms spend 20–40 % of engineering time building
internal tools that often duplicate release‑tracking functionality [6].

● Support and QA engineers lose ≈ 2.8 h/week searching for information and
≈ 2.0 h/week recreating existing assets, according to an APQC 2025
knowledge‑worker survey [3].

● 4TLAS’s field work shows that embedded software deliveries travel to a multitude
of endpoints. From PLM systems for manufacturing, to FTP drops for
system‑integration and certification partners, to ad‑hoc ZIP files emailed for
pre‑sales demos. This heterogeneous mix of delivery paths spawns confusion,
duplicated effort, and schedule slip as product and engineering teams chase
down the right artifact for each audience.

Implication: Fragmented delivery channels turn release engineering into a scavenger
hunt, pushing work into the outer loop and slowing time‑to‑market.

 7 © 2025 4TLAS, Inc.

4.5 Additional Industry Evidence
● IDC analyst survey [8] of over 800 software professionals found that only 16 % of

the work‑week is spent writing application code; the remaining 84 % lands in
CI/CD, deployment, monitoring, and other plumbing tasks—placing the
DevOps‑related share well inside our 30–50 % waste band [8].

● The 2024 State of Developer Experience study by Harness & Wakefield
Research reports 60–70 % of developer time consumed after coding—testing,
deployment, security, governance, compliance—again corroborating a 30–50 %
drag even when accounting for overlap with coding tasks [9].

● McKinsey’s deep dive into more than 60 embedded‑system programs notes
R&D‑budget overruns of 30–50 % stemming from unmanaged complexity, driving
launch delays and ballooning DevOps overhead [10].

● 52% of CxOs said their teams use 2-5 tools for software development, while 54%
of individual contributors report their teams use 6-14 tools, representing another
disconnect within organizations [11].

 8 © 2025 4TLAS, Inc.

5 Financial Impact Model
This section shows the mathematical models used herein.

5.1 Overlapping Hotspot Estimates

Hotspot
% Week
Wasted Hrs/Eng/Year $/20‑Eng Team

Build‑toolchain churn 40 % 768 $1.28 M
Config‑mgmt firefighting 15 % 288 $0.48 M
HW test‑rig dev & fix 37 % 710 $1.18 M
Release‑tracking overhead 30 % 576 $0.96 M
Total (non‑additive) — — ≈ $3.9 M

Note: Percentages derive from independent studies and overlap; summation illustrates
magnitude, not strict additivity.

5.2 Effective Capacity Lost (30-50%)
Applying the aggregate range found in multiple studies gives a clearer picture of the
dollars at stake.

Effective Capacity Lost $/Engineer/Year $/20‑Eng Team/Year

30 % $48 k $0.96 M
40 % $64 k $1.28 M
50 % $80 k $1.60 M

 9 © 2025 4TLAS, Inc.

6 Conclusion
DIY DevOps extracts a hidden tax of 30 – 50 % on embedded engineering capacity:
$0.96 – 1.6 M per 20‑engineer team. Cutting into that by just one-half saves almost 25%
for an organization. If you can all-but-eliminate it, you’ve just put almost 50% back onto
the bottom line.

The DevOps tool industry serves the web and mobile markets, but it’s not yet complete
for the embedded teams. The embedded market is ripe for a solution.

 10 © 2025 4TLAS, Inc.

7 References
[1] Mike Vizard, “Survey Shows Mounting DevOps Frustration and Costs,” DevOps.com,
14 Apr 2021. https://devops.com/survey-shows-mounting-devops-frustration-and-costs/

[2] CircleCI, The 2025 State of Software Delivery, Mar 2025, pp. 2–6.
https://circleci.com/landing-pages/assets/2025-state-of-software-delivery-report.pdf

[3] APQC, Knowledge Worker Productivity Benchmarks Report, 2025, Public source:
https://www.apqc.org/blog/km-makes-knowledge-workers-more-productive-and-less-stre
ssed-out

[4] Atlassian & Wakefield Research, State of Developer Experience Report 2024, Feb
2024. https://www.atlassian.com/software/compass/resources/state-of-developer-2024

[5] Chandra Gnanasambandam, “Can software developer productivity really be
measured?,” McKinsey Re:think, 1 May 2024.
https://www.mckinsey.com/~/media/mckinsey/email/rethink/2024/05/2024-05-01d.html

[6] Justin G., “The State of Internal Tools in 2020 – Survey Results,” Retool Blog, 5 Mar
2020. https://retool.com/blog/state-of-internal-tools-2020

[7] Christopher McArthur, “Breaking down the 2024 Survey Results,” Modern C++
DevOps, 22 Apr 2024, lines 33–37. https://moderncppdevops.com/2024-survey-results/

[8] Paul Krill, “Developers spend most of their time not coding – IDC report,” InfoWorld,
24 Feb 2025.
https://www.infoworld.com/article/3831759/developers-spend-most-of-their-time-not-codi
ng-idc-report.html

[9] Tim Anderson, “Developers spend too much time ‘not coding’ says Harness CEO,”
DevClass, 20 May 2024.
https://devclass.com/2024/05/20/interview-developers-spend-too-much-time-not-coding-
says-harness-ceo/

[10] Johannes Deichmann et al., “Cracking the complexity code in embedded systems
development,” McKinsey & Company, 25 Mar 2022.
https://www.mckinsey.com/industries/industrials-and-electronics/our-insights/cracking-th
e-complexity-code-in-embedded-systems-development

[11] GitLab, “Global DevSecOps Survey 2024,” GitLab, May 2024.
https://s204.q4cdn.com/984476563/files/doc_news/2024/06/2024secdev.pdf

 11 © 2025 4TLAS, Inc.

https://devops.com/survey-shows-mounting-devops-frustration-and-costs/
https://circleci.com/landing-pages/assets/2025-state-of-software-delivery-report.pdf
https://circleci.com/landing-pages/assets/2025-state-of-software-delivery-report.pdf
https://www.apqc.org/blog/km-makes-knowledge-workers-more-productive-and-less-stressed-out
https://www.apqc.org/blog/km-makes-knowledge-workers-more-productive-and-less-stressed-out
https://www.atlassian.com/software/compass/resources/state-of-developer-2024
https://www.mckinsey.com/~/media/mckinsey/email/rethink/2024/05/2024-05-01d.html
https://www.mckinsey.com/~/media/mckinsey/email/rethink/2024/05/2024-05-01d.html
https://retool.com/blog/state-of-internal-tools-2020
https://moderncppdevops.com/2024-survey-results/
https://www.infoworld.com/article/3831759/developers-spend-most-of-their-time-not-coding-idc-report.html
https://www.infoworld.com/article/3831759/developers-spend-most-of-their-time-not-coding-idc-report.html
https://www.infoworld.com/article/3831759/developers-spend-most-of-their-time-not-coding-idc-report.html
https://devclass.com/2024/05/20/interview-developers-spend-too-much-time-not-coding-says-harness-ceo/
https://devclass.com/2024/05/20/interview-developers-spend-too-much-time-not-coding-says-harness-ceo/
https://devclass.com/2024/05/20/interview-developers-spend-too-much-time-not-coding-says-harness-ceo/
https://www.mckinsey.com/industries/industrials-and-electronics/our-insights/cracking-the-complexity-code-in-embedded-systems-development
https://www.mckinsey.com/industries/industrials-and-electronics/our-insights/cracking-the-complexity-code-in-embedded-systems-development
https://www.mckinsey.com/industries/industrials-and-electronics/our-insights/cracking-the-complexity-code-in-embedded-systems-development
https://about.gitlab.com/content/dam/gitlab/about/2024-devsecops-survey.pdf
https://s204.q4cdn.com/984476563/files/doc_news/2024/06/2024secdev.pdf

[12] Mabl, 2024 State of Testing in DevOps, Apr 2024, p. 7.
https://www.mabl.com/state-of-testing-in-devops-2024

[13] Capgemini & OpenText, World Quality Report 2022-23: The Future Up Close, Nov
2023, p. 22.
https://www.opentext.com/assets/documents/en-US/pdf/the-future-up-close-world-qualit
y-report-2023-24-en.pdf

[14] Perfecto by Perforce, “The Latest Test Automation Trends: 4 Takeaways From the
2023 State of Test Automation Report,” blog post, 25 Jan 2023.
https://www.perfecto.io/blog/test-automation-trends

 12 © 2025 4TLAS, Inc.

https://www.mabl.com/state-of-testing-in-devops-2024
https://www.opentext.com/assets/documents/en-US/pdf/the-future-up-close-world-quality-report-2023-24-en.pdf
https://www.opentext.com/assets/documents/en-US/pdf/the-future-up-close-world-quality-report-2023-24-en.pdf
https://www.perfecto.io/blog/test-automation-trends

About 4TLAS
4TLAS (pronounced “atlas”) helps embedded teams automate, integrate, and scale their
development, test, compliance, and delivery by infusing modern development discipline
into their workflow. Drawing on deep roots in embedded engineering, DevOps, and
cloud automation, we offer purpose-built tools and expertise that strip away manual
bottlenecks and create scalable, repeatable workflows. Our culture is anchored in
integrity, curiosity-driven innovation, resilience, and a relentless focus on customer
success—values that shape how we collaborate and the solutions we deliver. The result
is a standardized approach that empowers engineering teams to release higher-quality
firmware faster, with full traceability and lower cost, so they can spend more time
innovating and less time wrestling with infrastructure.

Author: John Macdonald

Title: Co-founder | CEO

Contact: john.macdonald@4tlas.io

4TLAS: https://4tlas.io

 13 © 2025 4TLAS, Inc.

mailto:john.macdonald@4tlas.io
https://4tlas.io

	The Hidden Cost of DIY DevOps for Embedded Product Teams
	Executive Summary
	
	Table of Contents
	
	1 Introduction
	
	2 Embedded Specific Challenges
	
	3 Methodology
	
	4 Finding the Waste
	4.1 Build Standardization and Tool‑Chain Churn
	4.2 Configuration‑Management Firefighting
	4.3 Hardware Test  Automation Upkeep
	4.4 Delivery / Release Tracking Overhead
	4.5 Additional Industry Evidence

	
	5 Financial Impact Model
	5.1 Overlapping Hotspot Estimates
	5.2 Effective Capacity Lost (30-50%)

	
	6 Conclusion
	7 References
	
	About 4TLAS

